banner



how to find the base of a triangle

Program to find area of a triangle

Finding area using given sides:

Examples :

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the Demo Class for First Step to Coding Course,specificallydesigned for students of class 8 to 12.

The students will get to learn more about the world of programming in thesefree classes which will definitely help them in making a wise career choice in the future.

Input : a = 5, b = 7, c = 8 Output : Area of a triangle is 17.320508   Input : a = 3, b = 4, c = 5 Output : Area of a triangle is 6.000000

Area of a triangle can simply be evaluated using following formula.



Area = sqrt(s*(s-a)*(s-b)*(s-c)) where a, b and c are lengths of sides of triangle and s = (a+b+c)/2

C++

#include <bits/stdc++.h>

using namespace std;

float findArea( float a, float b, float c)

{

if (a < 0 || b < 0 || c < 0 ||

(a + b <= c) || a + c <= b ||

b + c <= a)

{

cout << "Not a valid triangle" ;

exit (0);

}

float s = (a + b + c) / 2;

return sqrt (s * (s - a) *

(s - b) * (s - c));

}

int main()

{

float a = 3.0;

float b = 4.0;

float c = 5.0;

cout << "Area is " << findArea(a, b, c);

return 0;

}

C

#include <stdio.h>

#include <stdlib.h>

float findArea( float a, float b, float c)

{

if (a < 0 || b < 0 || c <0 || (a+b <= c) ||

a+c <=b || b+c <=a)

{

printf ( "Not a valid triangle" );

exit (0);

}

float s = (a+b+c)/2;

return sqrt (s*(s-a)*(s-b)*(s-c));

}

int main()

{

float a = 3.0;

float b = 4.0;

float c = 5.0;

printf ( "Area is %f" , findArea(a, b, c));

return 0;

}

Java

class Test

{

static float findArea( float a, float b, float c)

{

if (a < 0 || b < 0 || c < 0 || (a+b <= c) ||

a+c <=b || b+c <=a)

{

System.out.println( "Not a valid triangle" );

System.exit( 0 );

}

float s = (a+b+c)/ 2 ;

return ( float )Math.sqrt(s*(s-a)*(s-b)*(s-c));

}

public static void main(String[] args)

{

float a = 3 .0f;

float b = 4 .0f;

float c = 5 .0f;

System.out.println( "Area is " + findArea(a, b, c));

}

}

Python

def findArea(a,b,c):

if (a < 0 or b < 0 or c < 0 or (a + b < = c) or (a + c < = b) or (b + c < = a) ):

print ( 'Not a valid triangle' )

return

s = (a + b + c) / 2

area = (s * (s - a) * (s - b) * (s - c)) * * 0.5

print ( 'Area of a triangle is %f' % area)

a = 3.0

b = 4.0

c = 5.0

findArea(a,b,c)

C#

using System;

class Test {

static float findArea( float a, float b,

float c)

{

if (a < 0 || b < 0 || c <0 ||

(a + b <= c) || a + c <=b ||

b + c <=a)

{

Console.Write( "Not a valid triangle" );

System.Environment.Exit(0);

}

float s = (a + b + c) / 2;

return ( float )Math.Sqrt(s * (s - a) *

(s - b) * (s - c));

}

public static void Main()

{

float a = 3.0f;

float b = 4.0f;

float c = 5.0f;

Console.Write( "Area is " + findArea(a, b, c));

}

}

PHP

<?php

function findArea( $a , $b , $c )

{

if ( $a < 0 or $b < 0 or

$c < 0 or ( $a + $b <= $c ) or

$a + $c <= $b or $b + $c <= $a )

{

echo "Not a valid triangle" ;

exit (0);

}

$s = ( $a + $b + $c ) / 2;

return sqrt( $s * ( $s - $a ) *

( $s - $b ) * ( $s - $c ));

}

$a = 3.0;

$b = 4.0;

$c = 5.0;

echo "Area is " , findArea( $a , $b , $c );

?>

Javascript

<script>

function findArea( a,  b,  c)

{

if (a < 0 || b < 0 || c < 0 ||

(a + b <= c) || a + c <= b ||

b + c <= a)

{

document.write( "Not a valid triangle" );

return ;

}

let s = (a + b + c) / 2;

return Math.sqrt(s * (s - a) *

(s - b) * (s - c));

}

let a = 3.0;

let b = 4.0;

let c = 5.0;

document.write( "Area is " + findArea(a, b, c));

</script>

Output :

Area is 6

Time Complexity: O(log2n)

Auxiliary Space: O(1)
Finding area using coordinates:

If we are given coordinates of three corners, we can apply below Shoelace formula for area.

Area            =\frac{1}{2} | \sum_{i=1}^{n-1} x_i y_{(i+1)}+x_ny1 - \sum_{i=1}^{n-1}x_{(i+1)}y_i-x_1y_n            = | 1/2 [ (x1y2            + x2y3            + ... + xn-1yn            + xny1) - (x2y1            + x3y2            + ... + xnyn-1            + x1yn) ] |          

C++

#include <bits/stdc++.h>

using namespace std;

double polygonArea( double X[], double Y[], int n)

{

double area = 0.0;

int j = n - 1;

for ( int i = 0; i < n; i++)

{

area += (X[j] + X[i]) * (Y[j] - Y[i]);

j = i;

}

return abs (area / 2.0);

}

int main()

{

double X[] = {0, 2, 4};

double Y[] = {1, 3, 7};

int n = sizeof (X)/ sizeof (X[0]);

cout << polygonArea(X, Y, n);

}

Java

import java.io.*;

import java.math.*;

class GFG {

static double polygonArea( double X[], double Y[], int n)

{

double area = 0.0 ;

int j = n - 1 ;

for ( int i = 0 ; i < n; i++)

{

area += (X[j] + X[i]) * (Y[j] - Y[i]);

j = i;

}

return Math.abs(area / 2.0 );

}

public static void main (String[] args)

{

double X[] = { 0 , 2 , 4 };

double Y[] = { 1 , 3 , 7 };

int n = X.length;

System.out.println(polygonArea(X, Y, n));

}

}

Python3

def polygonArea(X,Y, n) :

area = 0.0

j = n - 1

for i in range ( 0 , n) :

area = area + (X[j] + X[i]) * (Y[j] - Y[i])

j = i

return abs (area / / 2.0 )

X = [ 0 , 2 , 4 ]

Y = [ 1 , 3 , 7 ]

n = len (X)

print (polygonArea(X, Y, n))

C#

using System;

class GFG {

static double polygonArea( double []X,

double []Y, int n)

{

double area = 0.0;

int j = n - 1;

for ( int i = 0; i < n; i++)

{

area += (X[j] + X[i]) *

(Y[j] - Y[i]);

j = i;

}

return Math.Abs(area / 2.0);

}

public static void Main ()

{

double []X = {0, 2, 4};

double []Y = {1, 3, 7};

int n = X.Length;

Console.WriteLine(

polygonArea(X, Y, n));

}

}

PHP

<?php

function polygonArea( $X , $Y , $n )

{

$area = 0.0;

$j = $n - 1;

for ( $i = 0; $i < $n ; $i ++)

{

$area += ( $X [ $j ] + $X [ $i ]) *

( $Y [ $j ] - $Y [ $i ]);

$j = $i ;

}

return abs ( $area / 2.0);

}

$X = array (0, 2, 4);

$Y = array (1, 3, 7);

$n = count ( $X );

echo polygonArea( $X , $Y , $n );

?>

Javascript

<script>

function polygonArea(X, Y, n)

{

let area = 0.0;

let j = n - 1;

for (let i = 0; i < n; i++)

{

area += (X[j] + X[i]) * (Y[j] - Y[i]);

j = i;

}

return Math.abs(area / 2.0);

}

let X = [0, 2, 4];

let Y = [1, 3, 7];

let n = X.length;

document.write(polygonArea(X, Y, n));

</script>

Output:

2

Time Complexity: O(n)

Auxiliary Space: O(1)

https://www.youtube.com/watch?v=-fuEL8MEtOc


how to find the base of a triangle

Source: https://www.geeksforgeeks.org/c-program-find-area-triangle/

Posted by: hemphilldaint1979.blogspot.com

Related Posts

0 Response to "how to find the base of a triangle"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel