how to find the base of a triangle
Program to find area of a triangle
Finding area using given sides:
Examples :
Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the Demo Class for First Step to Coding Course,specificallydesigned for students of class 8 to 12.
The students will get to learn more about the world of programming in thesefree classes which will definitely help them in making a wise career choice in the future.
Input : a = 5, b = 7, c = 8 Output : Area of a triangle is 17.320508 Input : a = 3, b = 4, c = 5 Output : Area of a triangle is 6.000000
Area of a triangle can simply be evaluated using following formula.
Area = sqrt(s*(s-a)*(s-b)*(s-c)) where a, b and c are lengths of sides of triangle and s = (a+b+c)/2
C++
#include <bits/stdc++.h>
using
namespace
std;
float
findArea(
float
a,
float
b,
float
c)
{
if
(a < 0 || b < 0 || c < 0 ||
(a + b <= c) || a + c <= b ||
b + c <= a)
{
cout <<
"Not a valid triangle"
;
exit
(0);
}
float
s = (a + b + c) / 2;
return
sqrt
(s * (s - a) *
(s - b) * (s - c));
}
int
main()
{
float
a = 3.0;
float
b = 4.0;
float
c = 5.0;
cout <<
"Area is "
<< findArea(a, b, c);
return
0;
}
C
#include <stdio.h>
#include <stdlib.h>
float
findArea(
float
a,
float
b,
float
c)
{
if
(a < 0 || b < 0 || c <0 || (a+b <= c) ||
a+c <=b || b+c <=a)
{
printf
(
"Not a valid triangle"
);
exit
(0);
}
float
s = (a+b+c)/2;
return
sqrt
(s*(s-a)*(s-b)*(s-c));
}
int
main()
{
float
a = 3.0;
float
b = 4.0;
float
c = 5.0;
printf
(
"Area is %f"
, findArea(a, b, c));
return
0;
}
Java
class
Test
{
static
float
findArea(
float
a,
float
b,
float
c)
{
if
(a <
0
|| b <
0
|| c <
0
|| (a+b <= c) ||
a+c <=b || b+c <=a)
{
System.out.println(
"Not a valid triangle"
);
System.exit(
0
);
}
float
s = (a+b+c)/
2
;
return
(
float
)Math.sqrt(s*(s-a)*(s-b)*(s-c));
}
public
static
void
main(String[] args)
{
float
a =
3
.0f;
float
b =
4
.0f;
float
c =
5
.0f;
System.out.println(
"Area is "
+ findArea(a, b, c));
}
}
Python
def
findArea(a,b,c):
if
(a <
0
or
b <
0
or
c <
0
or
(a
+
b <
=
c)
or
(a
+
c <
=
b)
or
(b
+
c <
=
a) ):
print
(
'Not a valid triangle'
)
return
s
=
(a
+
b
+
c)
/
2
area
=
(s
*
(s
-
a)
*
(s
-
b)
*
(s
-
c))
*
*
0.5
print
(
'Area of a triangle is %f'
%
area)
a
=
3.0
b
=
4.0
c
=
5.0
findArea(a,b,c)
C#
using
System;
class
Test {
static
float
findArea(
float
a,
float
b,
float
c)
{
if
(a < 0 || b < 0 || c <0 ||
(a + b <= c) || a + c <=b ||
b + c <=a)
{
Console.Write(
"Not a valid triangle"
);
System.Environment.Exit(0);
}
float
s = (a + b + c) / 2;
return
(
float
)Math.Sqrt(s * (s - a) *
(s - b) * (s - c));
}
public
static
void
Main()
{
float
a = 3.0f;
float
b = 4.0f;
float
c = 5.0f;
Console.Write(
"Area is "
+ findArea(a, b, c));
}
}
PHP
<?php
function
findArea(
$a
,
$b
,
$c
)
{
if
(
$a
< 0
or
$b
< 0
or
$c
< 0
or
(
$a
+
$b
<=
$c
)
or
$a
+
$c
<=
$b
or
$b
+
$c
<=
$a
)
{
echo
"Not a valid triangle"
;
exit
(0);
}
$s
= (
$a
+
$b
+
$c
) / 2;
return
sqrt(
$s
* (
$s
-
$a
) *
(
$s
-
$b
) * (
$s
-
$c
));
}
$a
= 3.0;
$b
= 4.0;
$c
= 5.0;
echo
"Area is "
, findArea(
$a
,
$b
,
$c
);
?>
Javascript
<script>
function
findArea( a, b, c)
{
if
(a < 0 || b < 0 || c < 0 ||
(a + b <= c) || a + c <= b ||
b + c <= a)
{
document.write(
"Not a valid triangle"
);
return
;
}
let s = (a + b + c) / 2;
return
Math.sqrt(s * (s - a) *
(s - b) * (s - c));
}
let a = 3.0;
let b = 4.0;
let c = 5.0;
document.write(
"Area is "
+ findArea(a, b, c));
</script>
Output :
Area is 6
Time Complexity: O(log2n)
Auxiliary Space: O(1)
Finding area using coordinates:
If we are given coordinates of three corners, we can apply below Shoelace formula for area.
Area= | 1/2 [ (x1y2 + x2y3 + ... + xn-1yn + xny1) - (x2y1 + x3y2 + ... + xnyn-1 + x1yn) ] |
C++
#include <bits/stdc++.h>
using
namespace
std;
double
polygonArea(
double
X[],
double
Y[],
int
n)
{
double
area = 0.0;
int
j = n - 1;
for
(
int
i = 0; i < n; i++)
{
area += (X[j] + X[i]) * (Y[j] - Y[i]);
j = i;
}
return
abs
(area / 2.0);
}
int
main()
{
double
X[] = {0, 2, 4};
double
Y[] = {1, 3, 7};
int
n =
sizeof
(X)/
sizeof
(X[0]);
cout << polygonArea(X, Y, n);
}
Java
import
java.io.*;
import
java.math.*;
class
GFG {
static
double
polygonArea(
double
X[],
double
Y[],
int
n)
{
double
area =
0.0
;
int
j = n -
1
;
for
(
int
i =
0
; i < n; i++)
{
area += (X[j] + X[i]) * (Y[j] - Y[i]);
j = i;
}
return
Math.abs(area /
2.0
);
}
public
static
void
main (String[] args)
{
double
X[] = {
0
,
2
,
4
};
double
Y[] = {
1
,
3
,
7
};
int
n = X.length;
System.out.println(polygonArea(X, Y, n));
}
}
Python3
def
polygonArea(X,Y, n) :
area
=
0.0
j
=
n
-
1
for
i
in
range
(
0
, n) :
area
=
area
+
(X[j]
+
X[i])
*
(Y[j]
-
Y[i])
j
=
i
return
abs
(area
/
/
2.0
)
X
=
[
0
,
2
,
4
]
Y
=
[
1
,
3
,
7
]
n
=
len
(X)
print
(polygonArea(X, Y, n))
C#
using
System;
class
GFG {
static
double
polygonArea(
double
[]X,
double
[]Y,
int
n)
{
double
area = 0.0;
int
j = n - 1;
for
(
int
i = 0; i < n; i++)
{
area += (X[j] + X[i]) *
(Y[j] - Y[i]);
j = i;
}
return
Math.Abs(area / 2.0);
}
public
static
void
Main ()
{
double
[]X = {0, 2, 4};
double
[]Y = {1, 3, 7};
int
n = X.Length;
Console.WriteLine(
polygonArea(X, Y, n));
}
}
PHP
<?php
function
polygonArea(
$X
,
$Y
,
$n
)
{
$area
= 0.0;
$j
=
$n
- 1;
for
(
$i
= 0;
$i
<
$n
;
$i
++)
{
$area
+= (
$X
[
$j
] +
$X
[
$i
]) *
(
$Y
[
$j
] -
$Y
[
$i
]);
$j
=
$i
;
}
return
abs
(
$area
/ 2.0);
}
$X
=
array
(0, 2, 4);
$Y
=
array
(1, 3, 7);
$n
=
count
(
$X
);
echo
polygonArea(
$X
,
$Y
,
$n
);
?>
Javascript
<script>
function
polygonArea(X, Y, n)
{
let area = 0.0;
let j = n - 1;
for
(let i = 0; i < n; i++)
{
area += (X[j] + X[i]) * (Y[j] - Y[i]);
j = i;
}
return
Math.abs(area / 2.0);
}
let X = [0, 2, 4];
let Y = [1, 3, 7];
let n = X.length;
document.write(polygonArea(X, Y, n));
</script>
Output:
2
Time Complexity: O(n)
Auxiliary Space: O(1)
https://www.youtube.com/watch?v=-fuEL8MEtOc
how to find the base of a triangle
Source: https://www.geeksforgeeks.org/c-program-find-area-triangle/
Posted by: hemphilldaint1979.blogspot.com
0 Response to "how to find the base of a triangle"
Post a Comment